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Abstract

We present a mathematical model for the dynamics of an
electrostatically actuated micro-cantilever. For the com-
mon case of cantilevers excited by a periodic voltage, we
show that the underlying linearized dynamics are those of
a periodic system described by a Mathieu equation. We
present experimental results that confirm the validity of
the model, and in particular, illustrate that parametric res-
onance phenomena occur in capacitively actuated micro-
cantilevers. We propose a system where the current mea-
sured is used as the sensing signal of the cantilever state
and position through a dynamical observer. By investi-
gating how the best achievable performance of an optimal
observer depends on the excitation frequency, we show that
the best such frequency is not necessarily the resonant fre-
quency of the cantilever.

1 Introduction

The recent advances in the field of miniaturization and mi-
crofabrication have paved the way for a new range of appli-
cations, bringing along the promise of unprecedented levels
of performance, attainable at a limited cost, thanks to the
use of batch processing techniques.

In particular, scanning probe devices have proven to be ex-
tremely versatile instruments, with applications that range
from surface imaging at the atomic scale, to ultra high den-
sity data storage and retrieval, to biosensors, and to nano-
lithography.

However, in order to achieve the anticipated results in terms
of performance, an increase in throughput is required. In
this respect, much of the research effort has been focused
on the design of integrated detection schemes, which offer
moreover the advantage of compactness.

The most common solutions make use of the piezoresistive
[5, 15], piezoelectric [6, 8, 10], thermal expansion [7] or ca-
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pacitive effects [1, 3, 14]. The device that we propose is an
electrostatically actuated microcantilever. More precisely,
in our design the microcantilever constitutes the movable
plate of a capacitor and its displacement is controlled by
the voltage applied across the plates.

A major advantage of capacitive detection, is the fact that
it offers both electrostatic actuation as well as integrated
detection, without the need for an additional position sens-
ing device. The common scheme used in capacitive detec-
tion is to apply a second AC voltage at a frequency much
higher than the mechanical bandwidth of the cantilever.
The current output at that frequency is then used to es-
timate the capacitance, and consequently the cantilever’s
position. This sensing scheme is the simplest position de-
tection scheme available, however, it is widely believed to
be less accurate than optical levers or piezoresistive sens-
ing. We propose a novel scheme that avoids the use of a
high frequency probing signal by the use of a dynamical
state observer whose input is the current through the ca-
pacitive cantilever. For the purpose of implementation, this
scheme offers significant advantages as it involves simpler
circuitry. By using an optimal observer, or by tuning the
observers gains, it is conceivable that a high fidelity posi-
tion measurement can be obtain, thus improving resolution
in atomic force microscopy applications.

In this paper, we present a model for this electrostatically
actuated microcantilever. Using simple parallel plate the-
ory and for the common case of sinusoidal excitation, it
turns out that its dynamics are governed by a special sec-
ond order linear periodic differential equation, called the
Mathieu equation. We produce experimental evidence that
validates the mathematical model, including a mapping of
the first instability region of the Mathieu equation.

The optimal observer problem that was formulated also
in [12] is solved here following a different and simpler ap-
proach. This optimal design is then used as an analysis tool
to select the frequency of excitation that corresponds to the
best achievable observer performance. In other words, the
optimal observer design is used to actually design the sys-
tem (rather than the observer), by selecting the excitation
frequency that produces the least estimation error. Inter-
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estingly, it turns out that this frequency is not necessarily
the resonant frequency of the cantilever, and it depends on
the statistics of the measurement and process noise.

After the optimal excitation frequency is selected, we design
a suboptimal reduced order observer, whose parameters are
tuned to match the optimal performance index as close as
possible. The extension of these results to the array config-
uration is the subject of our current research.

The paper is organized as follows: In Section 2 we develop
the mathematical model of an electrostatically actuated
cantilever. In Section 3 we present the experimental results
that validate the model including, in particular, the map-
ping of the first instability region of the Mathieu equation.
In Section 4 we pose the optimal observer problem for time
varying systems and in Section 5 we design a suboptimal
reduced order observer. Finally, we present our conclusions
in Section 6.

2 Model Description For a Single Cantilever

The schematic of a single cantilever sensor is shown in Fig.1.
It consists of two adjacent electrically conductive beams
forming the two plates of a capacitor. One of the beams
is rigid, while the other (hereafter referred to as the can-
tilever) is fairly soft and represents the movable part of the
structure.
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Figure 1: A schematic of an electrostatically driven can-
tilever.

If the length of the cantilever is much bigger than its dis-
tance from the bottom plate, the capacitance is given by

C(x) =
εoA

d− z
,

where εo = 8.85 10−12As/V m is the permittivity in vac-
uum, A is the area of the plates, d is the gap between them
and z is the vertical displacement of the cantilever from its
rest position.

The attractive force, Fa, between the capacitor plates ge-
nerated by applying a voltage V (t), can be easily found to
be

Fa =
1

2

εoA

d2

V 2(t)

(1− z
d
)2
≈ 1

2

εoA

d2
(1 + 2

z

d
)V 2(t),

where the approximation holds when z
d

<< 1.

Only few algebraic steps are sufficient to derive the equation
of motion of the cantilever, which if V (t) = Vo cos ωot, is
given by

z′′ + cz′ + (a− 2q cos 2t)z = uf (t), (1)

where the prime denotes the derivative with respect to the
scaled time τ = ωot; c is a small damping coefficient, both

from air friction and structural losses, a = k
mω2

o
− 1

2

εoAV 2
o

md3ω2
o
,

k is the spring constant of the cantilever, q =
εoAV 2

o

4md3ω2
o
, and

uf (t) = q d cos2(t).

Equation (1) is an instance of the well-known Mathieu equa-
tion. Its properties are briefly discussed in the next section.
Here we just point out that when uf (t) ≡ 0, this equation
has very peculiar stability properties, that have been ex-
tensively investigated. As a and q vary in RI , its stable
solutions can be periodic, but they never decay to zero. In
the case of our interest, where uf (t) 6= 0 and periodic, we
can prove that, for any pair of parameters a and q, the
forced equation retains the same stability properties as the
unforced one.

We consider the current generated as the output y of the
system. Its first order approximation is given by

y = c1(t)z + c2(t)z
′ + vf (t), (2)

where c1(t) = − εoAVowo
d2 sin t, c2(t) = εoAVo

d2 cos t, and

vf (t) = εoAVowo
d

sin t.

Introducing the vector x = [z ż]T , we can derive from
(1) and (2) the state space representation of the cantilever
model

x′ = A(t)x + B(t)uf (t)
y = C(t)x + vf (t),

(3)

where A(t) =

[
0 1/wo

−a + 2q cos 2t −c

]
; B =

[
0
1

]
and

C(t) = [c1(t) c2(t)].

Note that (3) is a linear, time-varying and T -periodic
model, with T = 2π. Next section is devoted to presenting
the results of the experiments that we performed to validate
the model.

3 Experimental Validation of the Cantilever
Model

The device we have used in our experimental setup was a
200µm× 50µm× 2µm highly doped polysilicon cantilever,
fabricated using the MUMPS/CRONOS process, and with
a gap between the electrodes of about 2µm. Fig.2 is a SEM
picture of the actual device. The cantilever used for testing
was isolated from the array by physically removing all the
other beams. The mechanical response of the cantilever

Figure 2: SEM image of a polySi array of cantilevers.
Each beam measures 200µm× 50µm× 2µm .
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was tested in vacuum (p = 8mT ), using laser vibrometry
[16] to measure its displacement and velocity near the free
end, when electrostatically driven with different AC voltage
signals.
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Figure 3: Frequency response of the capacitive cantilever:
the dashed line corresponds to measured data,
the solid one is its least square fit.

The first experiments we performed aimed at identifing the
system as a simple mass-spring-damper model. As a matter
of fact, when the amplitude Vo of the AC actuation voltage
is small enough, the coefficient q in equation (1) is negli-
gible, and the beam can be described approximately by an
ordinary second order differential equation. Fig.3 shows the
magnitude, both measured and identified, of the frequency
response of this model, excited by a square-rooted sinu-
soidal signal. A least square fitting of the data gives a reso-
nant frequency of approximately fr = 50800Hz, a damping
coefficient c = 2.1×10−4, while the quality factor Q = 2200
turns out, as expected, to be quite high. The values of
these parameters were confirmed by time domain identifi-
cation experiments as well. If we consider that the Young’s
modulus for Cronos’ polysilicon is E = 158 ± 10 GPa, its
density is ρ = 2300Kg/m3, we can infer from the identified
data that the effective length of the capacitor plate is about
L = 160µm.

As the amplitude of the driving signal increases, so does the
value of q and this approximation of the model is no longer
appropriate. Therefore, we have to return to the original
equation (1).

3.1 The Mathieu equation and Parametric Reso-
nance
An extensive literature exists on the standard form of the
Mathieu equation,

z′′ + (a− 2q cos 2t)z = 0, (4)

that was first introduced by Mathieu to model the vibra-
tional modes of a stretched membrane having an elliptical
boundary.

Its stability properties have been thoroughly investigated
as a function of a and q. By means of perturbation analy-
sis methods, it is possible to determine the values of these
parameters that correspond to unstable behavior. Indeed,
the a-q parameter space of (4) can be sub-divided into
stable/unstable regions, having a characteristic tongue-like
shape [9] (see Fig.4). In particular, and we omit here the
details for the sake of brevity, it is not difficult to prove
that instabilities occur at a = n2, n ∈ NI . In terms of the

a

q

Figure 4: Mathieu equation: the shaded areas correspond
to unstable behavior.

physical parameters of the device, the driving frequencies
that cause unstable responses in the system are given by

ωo ≈ 2ωr

n
n ∈ NI ,

when using a square-rooted sinusoidal driving signal. Simi-
larly, the boundaries of the first instability region, given by
a = 1 ± q for (4), in terms of frequency and amplitude of
excitation turn out to be defined by

ω2
o = 4ω2

r − 4(1∓ 1

2
)
εAVo

md3
.

It is worth noting at this point that the presence of a damp-
ing term, whose existence we have neglected so far, has the
effect of shifting the tongues upwards in the a-q parameter
space. In our setup this is of little consequence, because
the magnitude of the shift is quite small (order of few mV ).
However this is not always the case and in fact it is the rea-
son why parametric resonance is difficult to observe at the
macroscale. Fig.5 is a comparison between the experimen-
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Figure 5: First instability region: experimental data
points (circles) and curves with identified pa-
rameters.

tal data relative to the boundaries of the first instability
region, and the same curves obtained from two sets of pa-
rameters: the solid (green) lines come from fitting these
experimental data points, the dash-dotted (red) ones come
from the frequency response identification.

Inside the instability region the cantilever oscillation does
not grow unbounded, as predicted from the previous linear
analysis. In reality, physical limiting nonlinear effects al-
ways come into play and cause the system to settle down
into a steady state response [13]. Here we can attribute the
appearance of a nonlinear term in our equation to the large
displacements of the beam. As a consequence, the linear
spring model needs to be corrected adding a cubic stiffness
term.

What we really see when driving the cantilever in paramet-
ric resonance regime is a subharmonic 2:1 oscillation of the
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beam [13], which vibrates at half the frequency of excita-
tion, as shown in Fig.6, which reproduces data collected
from the oscilloscope. Note also that during the transi-
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Figure 6: Cantilever response in parametric resonance
(oscilloscope data).

tion from non-parametric to parametric region, the response
shows a characteristic exponential growth (see Fig.7).
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Figure 7: Exponential growth of oscillation following
parametric excitation.

Above the critical driving voltage amplitude, and for driv-
ing frequencies near the first parametric resonance, the re-
sponse of the cantilever has the shape depicted in Fig.8.
The two curves reproduced in the picture represent the
data collected by sweeping the frequency from low to high
(blue ’+’ points) and from high to low (red ’o’ points), as
indicated by the arrows. This kind of plot is typical of
oscillators having a cubic nonlinearity (Duffing). What is
worth pointing out here is the sharp transition of the out-
put response (vertical segment of ’+’ data) that marks the
entrance into the parametric region. Since this transition
always occurs for the same value ω1, related to the res-
onant frequency of the beam, the phenomenon has poten-
tially many applications, from the realization of mechanical
filters to extremely sensitive mass sensors. Inside the para-
metric region, where the periodic subharmonic solution is
stable, as the driving frequency increases, the output am-
plitude starts to decrease, untill it goes back to zero upon
exiting the region. The size of the interval [ω1 ω2] corre-
sponds to the width of the parametric region represented in
Fig.5 for the input amplitude value considered. If we invert
the process and start decreasing the frequency, the output
amplitude, which is zero at the beginning, starts to increase
as soon as we enter the parametric region. This subhar-
monic periodic solution remains stable even after leaving
the region and its amplitude keeps increasing. However, it
is only a matter of time before it collapses to the other sta-
ble (zero) solution [13]. The location of this second jump

is not predictable and depends on the amplitude of the fre-
quency decrements.
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Figure 8: Frequency response above critical driving volt-
age amplitude (A = 10V ). The solid and
dashed lines have been added to the experi-
mental data points (marked with ’o’ and ’+’)
to facilitate the reading.

4 The Optimal Observer Problem

In this section we address the problem of designing a dy-
namical system capable of providing an estimate x̂ for the
cantilever displacement, based on the measurement of the
current generated. This approach to sensing is particularly
advantageous from the point of view of implementation, as
it requires a simpler circuitry. As a matter of fact, the
extraction of the desired information is left to a software
elaboration of the measurements.

As already pointed out in [12], the observer problem can
be formulated in the LFT framework as an H∞ filtering
problem, by defining the variable z = x − x̂ (estimation
error), and considering the generalized plant (see Fig.9)

Ggen :=




A(t) [M 0] 0

I 0 -I
C(t) [0 N] 0


=




A(t) B1 0

C1 0 D12

C2(t) D21 0


,

(5)
where the exogenous input w = [d n]T represents process

and measurement noise, the matrices A(t), C(t) are as in (3)
and the input u = x̂ is the output of the observer system.

Ggen

obs

w

u

z

y

G

Figure 9: A schematic of the observer problem.

In this framework the optimal observer problem amounts to
finding a dynamical system Gobs such that the H∞ norm
of the transfer function Tzw from w to z is minimized. If
the system is time-invariant, and has the structure of (5),
it can be proved that Gobs is a Luenberger observer, whose
gain L comes from the solution of an appropriate algebraic
Riccati equation.
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It turns out [11] that the same holds true in the time varying
case, where the algebraic equation is replaced by a differen-
tial Riccati equation. As a matter of fact, if the periodic
non-negative definite solution of this equation, P (t), is sta-
bilizing, the optimal filter is an observer given by

˙̂x = A(t)x̂ + P (t)C(t)′[y(t)− C(t)x̂].

The idea of the method we propose is to use the driving
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Figure 10: H∞-norm vs. frequency of excitation.

frequency ωo as a design parameter and tune its value so
that the closed loop system has the minimum attainable
H∞ norm. Fig.10 describes the dependence of this norm
from the frequency of excitation, ωo. The parameters of
the cantilever used in this analysis are those indicated in the
previous Section. In particular, for the length we have used
its effective value, obtained by identification. Notice that
the minimum is reached at different values of the driving
frequency, depending on the measurement noise weight n.
Even though we have no insight to offer at this point in
terms of a physical explanation of this result, it is clear that
by choosing the value for the driving frequency according
to the results of this analysis, we can provide our system
with the best combination of parameters to make it more
easily observable.

5 The reduced order observer

A reduced order observer allowes us to exploit the infor-
mation about the state of the system that is provided by
the output signal and leave to the observer the task of esti-
mating a smaller portion of the state vector. We refer the
interested reader to any book on linear systems theory for
the details of this standard technique.

After the appropriate state transformation, which in this
case is time varying, the equations of the observer can be
written as

˙̂v = (A11(t) + L(t)A21(t))v̂ + M(t)y

x̂ = T (t)

[
v̂ − L(t)y

y

]
,

where A11, A21, M are π-periodic matrices that can be com-
puted from the system matrices in (3). L(t) is the design
parameter, through which we can adjust the behavior of the
observer.

First of all, it is obvious that L(t) needs to be chosen so
that the state estimation error is asympotically stable. For
a T -periodic system this is equivalent to say that its charac-
teristic multipliers, which are the eigenvalues of the state

transition matrix Φ computed at T , are in norm less than
1, |λ(Φ(T ))| < 1. Since we are dealing with a scalar system,
Φ(T ) can be easily computed

Φ(T ) = e

∫ T

0
(A11+LA21)(σ)dσ

,

and the condition on the characteristic multipliers is equiv-

alent to the condition
∫ T

0
(A11+LA21)(σ)dσ < 0. By taking

L(t) = k cos(2t + φ) it can be seen that the stability condi-
tion becomes c/2 + kd4π cos φ > 0, where c is the damping
coefficient of (1) and d4 is a known function of the system
parameters. This of course poses a constraint on the choice
of k and φ. Figure (11) shows the results from a simula-
tion for two admissible values of k and φ = 0: as expected
the error dynamics are asymptotically stable. Notice that
the variable τ corresponds to a scaled time, therefore the
convergence is actually faster than it seems.
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Figure 11: Performance of the reduced order observer in
the presence of measurement noise and initial
estimation error. The solid line is the can-
tilever displacement, the dashed line its esti-
mate.

However, we want to select the parameters of this observer
not only to ensure stable error dynamics, but also to opti-
mize its performance, with the H∞-norm as its measure.

The computation of the H∞-norm of a periodic system, as
our closed loop system is, represents a difficulty. We have
overcome it by using lifting [4] and fast-sampling [2] tech-
niques. In fact it has been proven in [2] that as the sampling
rate, N/T T period of the system, grows the approximate
sampled model converges to the original one with a rate of
1/N .

Figure (12) depicts the value of the closed loop norm as k
and φ vary in RI and [0 2π) respectively. Based on this
plot, a better informed choice of k and φ turns out to be
k = 0.001 and φ = 3.63, which give H∞-norm=45.

6 Conclusions

In this paper we have derived a mathematical model for
an electrostatically actuated microcantilever. In our setup,
the microcantilever constitutes the movable plate of a ca-
pacitor and its displacement is controlled by the voltage
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Figure 12: Estimation error for different values of the
observer gain: a) k > 0 cos(φ) < 0, b) k < 0
cos(φ) > 0.

applied across the plates. The current generated is used
as the sensing signal. In the case of sinusoidal excitation,
we have proved that its dynamics are regulated by a special
second order differential equation with periodic coefficients,
the Mathieu equation. We have provided experimental vali-
dation of the mathematical model, which included the map-
ping the first region of instability of the Mathieu equation.
We have formulated the optimal observer problem for the
single cantilever and used this design to select the frequency
of excitation that makes our model more easily observable.
Moreover, it has been used as a benchmark to compare
the performance of a reduced order observer and tune its
parameters. The extension of these results to the array
configuration is the subject of our current research.
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