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Abstract

In this paper we will present a model for an array of

microcantilevers that are used in Atomic Force Mi-

croscopy and nano-scale manufacturing. The micro-

cantilevers are connected to each other through a com-

mon base, and are individually actuated. The sensors

are also integrated on each microcantilever. This sys-

tem is an example of a spatially-invariant system with a

distributed array of sensors and actuators. We exploit

the spatial invariance of the problem to design optimal

‘?f2 controllers for this array. An analytic expression

for the optimal controller is derived in the transformed

domain, and estimates of the coupling range of the con-

troller is obtained.

1 Introduction

For the past ten years the Atomic Force Microscope

(AFM) has been developed as a tool for material imag-

ing and characterization. The basic operation of an

AFM depends on the detection and control of the de-

flection of a microcantilever interacting with the sur-

face being analyzed [7, 8]. The widespread use of the

AFM in applications that range from electronic to bio-

logical is a testimony to the importance of this device.

Throughput in AFM’s is limited by the mechanical

properties of the microcantilevers and by the detec-

tion and control design. A very important objective

is to increase the throughput by improving both the

design of the microcantilevers and the control system.

Recently a new approach for increasing the throughput

was developed where an array of microcantilevers are

used to simultaneously image a surface, Control of the

individual microcantilevers is achieved by a piezoelec-

tric actuator and a piezoresistive sensor integrated on
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the microcantilever [10, 11].

In this paper we study a model for an array of micro-

cantilevers interacting with surface forces of a sample.

Each microcantilever is modeled as a mass-spring sys-

tem, and the interaction between a microcantilever and

a sample is modeled as a Van der Waals potential. The

Van der Waals potential models both the long range

attractive forces as well as the short range repulsive

forces. The interaction between the individual micro-

cantilevers is modeled by a coupling matrix acting on

the vector of displacements of the microcantilevers. By

exploiting the spatial invariance of the problem, we de-

sign ?12 optimal controllers using the methodology of

[4, 5, 6]. The dependence of each local controller on

measurements from nearby microcantilevers is quanti-

fied by analyzing the analyticity of the optimal con-

trollers in the transformed domain.

The paper is organized as follows: In Section 2 we de-

velop the mathematical model of the multicantilever

array and sample, in Section 3 we construct an opti-

mal %2 controller, in Section 4 we analyze the optimal

controller to construct suboptimal controllers with lim-

ited sensor measurements, and finally we present our

conclusions in Section 5.

2 Model Description

After presenting a model for a single cantilever, we

show how to model an array of microcantilevers. We

then show how this model fits within the general frame-

work of spatially invariant systems.

2.1 Single Microcantilever Model

In the unimodal approximation, the cantilever-tip-

sample system is modeled by a sphere of radius R and

mass m, which is suspended by a spring of stiffness k.

The deflection from the equilibrium position, Z, which

represents the distance from the microcantilever to the

sample when only the gravity is acting on it, is mea-

sured by z. The interaction with the sample is modeled
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by the Lennard-Jones potential,

V(z, z) =
AIR A2R

1260(Z + Z)7 – 6(Z + z) ‘
(1)

whose two terms describe, respectively, the short range

repulsive forces and the long range attractive forces be-

tween the molecules of the tip and those of the surface.

Al and AZ are the Hamacker constants for the repul-

sive and attractive potentials. The net energy of the

system scaled by the effective mass m of the cantilever

is given by

Duf
H(x, i,z) = ;P + ;W:X2 – —

U6DW:

(z+ z) + 21O(Z+ $)7’
(2),,

where, u 1 =
[

~ is the first modal frequency of the

system and D = ~. Note that il(x, 4, Z), which

is the Hamiltonian of the system, is a constant of the

dynamics (invariant of motion) since there is no dissi-

pation.

Introducing the state variables xl = x and X2 = x,

we can derive from (2) the equations which govern the

dynamics of a single cantilever

DLJ ; U6DW:

‘2 = -W;z’ - (z+ z,)’ + 30(Z + x)’” ‘4)

In order to study the qualitative behavior of the sys-

tem, it is convenient to perform the following change

of variables. By setting T = wlt, and dividing the left

and right hand sides of (3) and (4) by 2, = ~ (2D) *,

we get

(5)

d IY’d
G = -fl - (a+(l)z + 30(a+cl)8’ (6)

z
where, ~1= ~,&=& ,d=$,~=~, and E =

~. The prim; denotes the derivative with respect to

?. Z, is ‘the critical value of Z, below which the at-

tractive force is greater than the spring force, and in

the absence of the repulsive force the surface snaps the

tip into contact, [1]. Note that the equations describ-

ing the dynamics of the dimensionalized system (3) and

(4) and of the non-dimensionalized one (5) and (6) are

formally the same. Hence, we can study the dynami-

cal behavior of the former, using the equations of the

latter.

As a varies over [0, m], the number of equilibrium

points of the system varies too. In particular in [2]

it is shown that there are two critical values of a, ajl

and a,.. When a < cr,u there is only one equilibrium

point. If ~~v < a < a,l the equilibrium points be-

come three. Finally, if a > asl there is again only one

equilibrium point.

2.2 Array of Microcantilevers

A multicantilever structure consists of an array of mi-

crocantilevers connected to the same beam.

Though each cantilever is actuated independently, the

presence of the beam implies that its dynamics is af-

fected by the behavior of the others. As a consequence

the model we introduced for the single cantilever has

to be modified to take into account this correlation. In

this work we model this interaction via a symmetric

infinite matrix Ul,k, so that the state equations for the

i-th cantilever become

G,iw= f2,i(t) (7)

(8)

Z6d
+CO

+ ~ %,kfl, k(t) ,
30(ct + .&,i(t))8 ,=_m

k #i

Due to the fact that the microcantilevers are similar

the coefficients a~,k satisfy ai,~ = ai_k, and decay as k

goes to infinity.

Equations (7) and (8) give a local description of the

system, where by local we mean limited to the i-th

cantilever. In order to build a model for the whole

multicantilever system, we can associate with each el-

ement a local state variable

[1Cl,i(t)
‘$(~, ~) = &.(~) ‘

which is a two dimensional variable, where i c Z is

the spatial coordinate and t E R is the time variable.

Hence the whole multicantilever will be described by a

global state variable

H+l,t)E(t) = f(o, t) ,

f(l,t)

which is an infinite dimensional vector. Now, lineariza-

tion of equations (7) and (8) around an equilibrium

point leads to the following expression for the local

model

g(i,t) =

[
4E’d 1; &(i, t)+—–1 + (a+,t,,,)3 o 0

15(a+E1. z)9

:~:i[a. df(~,t)~J
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Figure 1: Aschematic ofamulticantilever structure.

so that for the whole system we have

. . . . .
. . . B.l F BI B2

. . . B-2 B-l F BI B2 ‘“.

1““. B-2 B-l F BI ‘“.

“.”.. .

E(t)

(9)

Notice that the state matrix is block Toeplitz. As

we will see, it is possible to formulate this problem

in the framework of the theory of spatially-invariant

distributed continuous-time systems.

2.3 The Microcantilever Array as a Spatially-

Invariant System

Spatially-distributed continuous time systems are a

particular class of multidimensional systems. From the

input/output point of view, they are represented by the

relationship

y(i, t)= lx‘[m w(i – j,t – T)u(j, r)]dr, (lo)
–~ J.–cc

where t E R is the time variable, and i G Z is the

spatial coordinate. A system with input/output rela-

tionship (10) is causal in time, but not in space and

is invariant in both time and space. This means that

if y(i, t) is the output response resulting from input

u (i, t), then y(i – k, t – ~) is the output response result-

ing from input u(i – k, t – ~).

The Fourier transform represents a convenient mathe-

matical tool to study these systems. If we apply the

Fourier transform in the spatial domain, which for a

two-dimensional signal is defined as

co

S(}, t) = ~ s(k, t)e-ikx ,

/t=-co

we can associate the two dimensional system with a one

dimensional parametric system, which is equivalent to

the former, but that can be analyzed using well known

results from classical systems theory. We refer the in-

terested reader to [3] for the main results concerning

this approach in the study of spatially invariant dis-

tributed systems.

In this work we will explicitly use an important result

that was shown in [5], concerning the optimal control of

this class of systems. Namely, in [5] it shown that when

the underlying dynamics of the system and the perfor-

mance objective are spatially invariant, then optimal

controllers will also have a spatial invariant structure.

The physical and, consequently, the mathematical

structure of the multicantilever model allows us to em-

bed it in the class of spatially invariant systems. This

means that in order to study the multicantilever, we

do not need to deal with the infinite dimensional model

(9), but that we can use instead the parametrized local

model.

The linearized model that we obtained earlier can be

conveniently modified in the following way

where we have added an external input, and where A

is a convolution operator

[Az(,t)](i,t) = ~A,-j*(j,t),

~

defined as

{

4E6d

Ai =
–1 + (a+::,;). – 15( CI+C1,”)’

i=(l

a~ ~+o”

If we now apply the discrete Fourier transform in the

spatial domain, we get the one-dimensional parametric

system

where

2d 4X6d
co

+ ~ a~e-ik~.a(~) = ‘1+ (a +f1,i)3 - 15(a+ &i)’ ,=-@

k#O

(13)
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3 ‘Hz Optimal Controller

As shown in [4], once we have parameterized the dis-

tributed problem by a family of finite dimensional state

space problems through the application of the Fourier

transform, we can use the same results of classical finite

dimensional ‘Hz theory (see [4], [3]). More precisely, af-

ter using spatial transforms, the problem can be stated

as the minimization of the cost functional

2T cc

J+
//

[&(A~)*Qt(A~) + u(A t)* Ru(At)] dtd~
00

subject to

with &(J, O) = to(A). Since the system is stabilizable,

its unique solution is given by the feedback control law

U(A, i) = –R-l(A)B*(A)P(A)f(A,q

where P(A) is the positive definite solution of the

parameter-dependent algebraic Riccati equation

I?*(A)P(A) + P(A)F(A) + Q(A)

–P(A)B(A)R-l (A) B*(A)P(A) = o.
(14)

In our case, the state model is given by (12), and if we

take

‘=[::1 Q=[::]
the matrix which defines our stabilizing controller is

4 Suboptimal Controllers and Communication

Range

The analytic properties of the feedback matrix K(A)

have a strong impact on the structure of the optimal

control law. By analyzing K(A) we want to derive some

information concerning the possibility of implementing

a suboptimal control law, through the truncation of the

above series (15). Therefore, it becomes important to

determine the decay rate of its coefficients.

This information is related to the location in the com-

plex plane of the singularities of (15). More precisely,

the decay rate of the coefficients of (15) corresponding

to positive powers of z is determined by the singularity

AM = rrlin{A(K) : IA(K) I > 1}

while for the decay rate of the coefficients correspond-

ing to negative powers of z we have to consider

& = rna${A(K) : IA(K) I < 1} .

From the analytical expression of the matrix K(A), it

follows that such singularity points are solutions of the

equations

a(~)z +q = O (16)

and

2a(A) +2{-+ ~=() , (17)

which are equivalent respectively to

where a(A) is as defined in equation (13). The fact

that K(A) is irrational in A means that the controller

needs to look at distant points to compute the control

input at each given point. In real time, the feedback

control law is implemented using the coefficients of a

Laurent series expansion of K(A) in an open annulus

that contains the unit circle. If K(z) is the analytic

extension of K(A) in such an annulus, its Laurent power

series expansion “will be

(15)

so that the resulting optimal control law is given by

cc

U(h, t) = ~ K(i)f(h – i,t)

From an implementation point of view, the issue of

how large is the number of state variables the controller

needs to know is crucial. If the Laurent expansion coef-

ficients of K(A) decay to zero fast enough, it is reason-

able to expect that a satisfactory suboptimal control

law can be achieved by truncating the infinite series

expansion.

(18)

(19)

Analyzing the expression of a(~)

2d 4X6d m
+ ~ a~e-ik~ ,a(~) = ‘1+ (a +$1,,)3 - 15(a +&,i)’ ,=.m

k#O

it is easy to see that, when the number of interact-

ing cantilevers iV is finite, (16) and (17) are reciprocal

equations of degree N ~ with N even.

Reciprocal equations with even degree are equations of

the form

az2~+bx2k- l+cx2k-2+. . .+rxk+. . .+c~z-l+$+a = O ~

(20)
that can be easily rewritten as

C@+z-’)+b(z’-l+d)+c(z(+x’k+a)+a)+. . .+r = 0.

Defining t := x + a-1, it is not difficult to verify that

t’-2 =X2+ Z-2, t’ - 3t = z’ + z-’ and, in general,

& + x–m is a polynomial of degree m in t. It follows

that the reciprocal equation (20) can be rewritten as
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an equation of degree k in the variable t. Hence, the

solution of a reciprocal equation of degree 2k can in

general be reduced to solving one polynomial equation

of degree k, as well as at most k quadratic equations. In

what follows, we use this property to reduce the order

of the polynomials defining the singularities and find

an explicit analytical expressions for them.

We explicitly consider, at first, the case where the dy-

namics of each cantilever is affected only by the pres-

ence of the two closest cantilevers, i.e. the case where

in (8) only al = a_ 1 are different from zero. It fol-

lows that, from (16), we obtain four singularity points,

which after some algebraic calculations, are given by

while from (17) we get

where in both cases .0 = —1 — ~ +
4Z6d

(a+:,,) 15(a+c1, t)9 “

In the simulations that we performed, we set a = 1.2

and X = 0.03. For this value of a the nonlinear system

has three equilibrium points, therefore it can be associ-

ated with three linearized systems. Fig (4) shows how

the maximum and minimum modulus singularities, re-

spectively AM and Am, move as .1 varies in [~ , ~]

for these three systems. As expected, the value of AM

tends to decrease, while the value of & tends to in-

crease, meaning that the decay rate of the coefficients

becomes slower: as the influence of the neighboring

cantilevers becomes stronger, the controller needs more

information to stabilize and optimize the performance

of the system.

We then considered the case of four interacting can-

tilevers. The explicit expression for the singularities is,

from (16)

and from (17)

~9,...,l2 = ‘~ * <

a;–a2(4c.zo+q–4 -sLz2)

4a9

Simulations show that the decay rate of the coefficients

of K is slower as in Fig (4).

5 Conclusion

The new techniques of optimal control of spatially in-

variant systems were used to design optimal controllers

for an array of microcantilevers that is used to increase

throughput in atomic force microscopy. Analytical for-

mulae were obtained for the optimal controller, which

were then used to design suboptimal controllers with

limited communication from the sensors. The use of

the spatial invariance properties of the system was cru-

cial in developing finite dimensional controllers.
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