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Abstract. The concept of proper rational matrix is strictly connected with the representation of
causal transfer matrices. In the two-dimensional (2D) case there is much freedom in defining proper
rational matrices. This freedom is connected to the fact that past and future in the 2D case can be
determined by a 2D cone. In this way the concept of rational matrix which is proper with respect to
a cone can be introduced. Moreover, an algorithm that checks the properness of a rational matrix
is proposed. Finally, this algorithm is used for determining all possible causal input/output (I/O)
representations of a behavior given by a kernel representation.
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1. Introduction. In the behavioral approach, a dynamical system is essentially
described through the set of its admissible trajectories, without making any a priori
distinction between input and output variables and without setting any causality
relation between them.

This distinction, which is the characteristic feature of input/output (I/O) models,
can be performed a posteriori, introducing the concept of free variables that are called
in this way because their value can be arbitrarily assigned. As a consequence we have
that, at least for the class of autoregressive (AR) systems, we can extract an I/O
description [12, 9, 15, 13], starting from a behavioral model.

The first question that naturally arises when dealing with I/O descriptions is
how to define causality. In case of discrete two-dimensional (2D) systems, which
is the one we are interested in, the matter is complex, since the plane Z2 lacks a
natural total ordering. As a consequence, the choice of the causality cone C is not as
straightforward as in the one-dimensional (1D) case. In the classical I/O approach
[4], the only admissible causality cone is C = N2, so that causality is synonymous
with quarter plane causality. In this paper we consider an extension of this notion of
causality by assuming that C is an arbitrary cone in Z2.

The characterization of causality of 2D systems is based on the concept of the
2D proper rational matrix. This concept has been introduced and analyzed for a par-
ticular class of cones in [14, 3]. The characterization of 2D proper rational matrices
allowed us to obtain some interesting existence results regarding causal I/O represen-
tations of 2D behavioral systems. The aim of this paper is to investigate the causal
I/O representation of 2D behavioral systems in another direction. More precisely,
starting from the kernel representation of a 2D behavioral system, we want to obtain
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an efficient method for determining all the causal relations between the variables of
the system, given in terms of the set of all causality cones. This result provides a full
characterization of the causality structure of the behavioral system. This problem is
solved by extending the concept of the 2D proper rational matrix to general cones
and by finding a suitable characterization of this class of rational matrices.

2. 1D proper rational matrices. In this section we will recall some basic
definitions and results on proper rational matrices in the 1D case (see [7, 6]).

In this paper we will consider only polynomials having real coefficients. Notice,
however, that all the results we will present hold true for any field. A polynomial
p(z), in which we allow also negative powers of the indeterminates, is called a Laurent
polynomial and can always be written as

p(z) =

N∑
i=n

piz
i,

where n ≤ N are suitable integers. The coefficient p0 is called zero-degree coefficient
of the polynomial p. The set of all the Laurent polynomials has a ring structure
with respect to the usual addition and multiplication and it is denoted by the sym-
bol R[z, z−1]. The rings R[z] and R[z−1] are both subrings of R[z, z−1]. Consider,
moreover, the ring R[[z]] of formal power series

s(z) =
+∞∑
i=0

siz
i,

and define finally the field of rational functions

R(z) :=

{
q(z)

p(z)
: q(z), p(z) ∈ R[z] and p(z) 6= 0

}
,

which is the field of fractions of R[z] (see [1]). It is easy to verify that, up to isomor-
phism, R(z) coincides with the field of fractions of R[z, z−1].

Definition 1. A rational function h ∈ R(z) is said to be proper if there exist
p, q ∈ R[z] such that h = q/p and the zero-degree coefficient of p is nonzero.

Notice, moreover, that in this paper the role of the indeterminates z and z−1 is
inverted with respect to the standard notation used in most system theory books (see
[6]). We prefer to follow the less standard notation proposed in [7, 5], because it is
more convenient in the 2D case as we will see below (see also [4]).

We give now a theorem providing several equivalent characterizations of proper
rational functions. The equivalence of these characterizations is easy to verify (see
the first part of Chapter 2 in [7]).

Theorem 2. Let h ∈ R(z). The following facts are equivalent:
1. h is proper.
2. There exists a unique formal power series y ∈ R[[z]] such that for all p, q ∈

R[z] such that h = q/p we have that

py = q.

3. Let p, q ∈ R[z, z−1] be coprime polynomials such that h = q/p. Then there
exists n ∈ Z such that

(a) p̂ := znp, q̂ := znq ∈ R[z].
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(b) The zero-degree coefficient of p̂ is nonzero.
4. Let p, q ∈ R[z] coprime in R[z] be such that h = q/p. Then the zero-degree

coefficient of p is nonzero.
Remarks. Notice that condition 1, which corresponds to the definition of a proper

rational function, is an existence statement and thus does not give an algorithmic
check of properness. Condition 2 connects proper rational functions with formal power
series and so with causal impulse responses. Conditions 3 and 4 provide algorithmic
checks of properness in the different rings R[z, z−1] and R[z], which in this case are
slightly different. The distinction between these two properties will be useful in the
2D case.

Now we consider the matrix case. A polynomial matrix P can be considered both
as a matrix with polynomial entries and as a polynomial having matrix coefficients.
This is the reason why it makes sense to introduce the concept of the degree-zero
coefficient of a polynomial matrix that is in this case a matrix.

Definition 3. A rational matrix H ∈ R(z)h×m is said to be proper if its entries
are proper rational functions.

We give also in the matrix case a theorem that is similar to the previous one and
that provides several equivalent characterizations of a proper rational matrix. The
characterization of properness for 1D rational matrices is usually given in terms of row
proper matrix fractions (see [6]). The characterization that we will give below is based
on coprime matrix fractions. This characterization is known [7], but it is less classical
and for this reason we will give a brief proof of this result. The convenience of this
characterization compared with the characterization in terms of the row proper matrix
fractions is motivated by the fact that the extension of the concept of the row proper
matrix fraction to the 2D polynomial matrices is rather involved, while the extension
of the concept of coprime matrix fraction to the 2D case is straightforward [8].

Theorem 4. Let H ∈ R(z)h×m. The following facts are equivalent:
1. H is proper.
2. There exist P ∈ R[z]h×h and Q ∈ R[z]h×m such that H = P−1Q and such

that the degree-zero coefficient of P is an invertible square matrix.
3. There exists a unique formal power series Y ∈ R[[z]]h×m such that for all

P ∈ R[z]h×h and Q ∈ R[z]h×m such that H = P−1Q we have that

PY = Q.

4. Let P ∈ R[z]h×h and Q ∈ R[z]h×m be left coprime polynomial matrices such
that H = P−1Q. Then the degree-zero coefficient of P is an invertible square matrix.

Proof. (1 ⇒ 3) By definition and by Theorem 2, condition 2, we know that
if for i = 1, . . . , h and j = 1, . . . ,m the polynomials fij , gij ∈ R[z] are such that
H = [pij/qij ], then there exist yij ∈ R[[z]] such that pijyij = qij . Let p :=

∏
pij and

let Q̄ := [pqij/pij ] ∈ R[z]h×m so that H = Q̄/p. Let P ∈ R[z]h×h and Q ∈ R[z]h×m

be such that H = P−1Q. Then we have that

pQ = PQ̄ = pPY,

which, from the fact that R[[z]] is a domain, implies that Q = PY . We show finally
the uniqueness of Y . Suppose that there exist P̂ ∈ R[z]h×h, Q̂ ∈ R[z]h×m, and
Ŷ ∈ R[[z]]h×m such that P̂ Ŷ = Q̂ and P̂−1Q̂ = H = P−1Q. Since H = Q̄/p, we have
that

P̂ Q̄ = pQ̂ = pP̂ Ŷ .



TWO-DIMENSIONAL CAUSAL INPUT/OUTPUT REPRESENTATIONS 1541

Notice, moreover, that Q̄ = pY implies P̂ Q̄ = pP̂Y and so pP̂ Ŷ = pP̂Y . Since P̂ is
nonsingular, this implies that Ŷ = Y .

(3 ⇒ 4) Let P ∈ R[z]h×h and Q ∈ R[z]h×m be left coprime polynomial matrices
such that H = P−1Q. Then by condition 3 there exists Y ∈ R[[z]]h×m such that
PY = Q. Moreover, coprimeness ensures the existence of polynomial matrices A ∈
R[z]h×h and B ∈ R[z]m×h, which satisfy the Bezout identity PA + QB = I. This
implies that P (A+ Y B) = I and hence that the degree-zero coefficient of P must be
an invertible matrix.

(4 ⇒ 2) This is trivial.
(2 ⇒ 1) This follows from the fact that H = adj(P )Q/det(P ) and from the fact

that the degree-zero coefficient of det(P ) is nonzero.
Notice that the only condition that was valid in the scalar case and that is not

valid any more in the matrix case is the one involving the primeness of Laurent poly-
nomials. Condition 4 still provides an algorithmic check of properness in the matrix
case together with condition 1 (the definition), which, translating matrix properness
into scalar properness, shows another way to verify whether a rational matrix is proper
or not.

3. Cones and 2D proper rational matrices. In this section we will extend
the notions of proper rational function and matrix to the 2D case. Some results in
this direction can be found also in [14].

Before giving the definition of properness in the 2D case we need to introduce the
notion of cone and of regular cone in Z2.

Definition 5. A cone C is a subset of Z2 such that there exists a pair of elements
d1, d2 ∈ Z2 satisfying

C = Z2 ∩ {αd1 + βd2 ∈ R2 : α, β ∈ R, α, β ≥ 0},
and such that the matrix D ∈ Z2×2, whose columns coincide with d1 and d2, is
nonsingular, i.e., det(D) 6= 0. A cone C is said to be regular if there exists a pair of
elements d1, d2 ∈ Z2 such that

C = {αd1 + βd2 : α, β ∈ N}
and such that det(D) = ±1, where D is the matrix defined from d1, d2 as above.

It can be shown that a regular cone C is always isomorphic to N2; i.e., it is possible
to perform a change of coordinates in such a way that C coincides with N2. Moreover,
given a cone C, there is always a regular cone Cr containing C. Actually, it is easy to
prove that, up to a change of coordinates, there is no loss of generality not only in
assuming that any cone is contained in N2, but also in supposing that it is specified
as

C = {(i, j) ∈ N2 : j ≤ mi},(1)

where m is a suitable positive rational number.
Given a Laurent polynomial in two indeterminates

p(z1, z2) =
∑

(i,j)∈S
pijz

i
1z
j
2,

where S is a finite subset of Z2, by supp(p) we mean the set of points (i, j) ∈ Z2

corresponding to nonzero coefficients of p(z1, z2)

supp(p) = {(i, j) ∈ Z2 : pij 6= 0}.
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Let C be a cone. With the symbol R[z1, z2, z
−1
1 , z−1

2 ]C we mean the ring of poly-
nomials whose support is contained in C. Similar definitions can be immediately
extended to polynomial matrices and power series. More precisely, with the symbol
R[[z1, z2, z

−1
1 , z−1

2 ]]C we mean the ring of formal power series

s(z1, z2) =
∑

(i,j)∈C
sijz

i
1z
j
2.

Notice that R[z1, z2, z
−1
1 , z−1

2 ]C is always a ring, but unless C is regular, this ring lacks
many of the properties usually possessed by polynomial rings. (It can be seen, for
instance, that it is not, in general, a unique factorization domain.)

For the sake of simplicity, from now on we will denote by z the pair (z1, z2).
Consequently, we will use the following shorthand notations:

R[z, z−1]C := R[z1, z2, z
−1
1 , z−1

2 ]C ,(2)

R[[z, z−1]]C := R[[z1, z2, z
−1
1 , z−1

2 ]]C ,(3)

R(z) := R(z1, z2),(4)

where the last notation denotes the field of rational functions in two indeterminates.

If we think of a polynomial matrix A(z1, z2) ∈ R[z, z−1]h×m as a polynomial with
matrix coefficients, we can write it as

A(z1, z2) =
∑

(i,j)∈S
Aijz

i
1z
j
2,(5)

where Aij ∈ Rh×m and S is a finite subset of Z2. By degree-zero coefficient of A(z1, z2)
we mean the matrix A00.

Definition 6. A 2D rational function h ∈ R(z) is said to be proper with respect
to a cone C if there exist p, q ∈ R[z, z−1]C such that h = q/p and the zero-degree
coefficient of p is nonzero.

Now we give a theorem providing several equivalent characterizations of 2D proper
rational functions. These characterizations provide the extension to the 2D case
of the analogous results valid in the 1D case presented in Theorem 2. Observe,
moreover, that the theorem that follows has already been proved for regular cones in
[14, Lemma 3].

Theorem 7. Let h ∈ R(z) and let C be any cone in Z2. The following facts are
equivalent:

1. h is proper with respect to C.
2. There exists a unique formal power series y ∈ R[[z, z−1]]C such that for all

p, q ∈ R[z, z−1]C such that h = q/p we have that

py = q.

3. Let p, q ∈ R[z, z−1] be coprime polynomials such that h = q/p. Then there
exists n1, n2 ∈ Z such that

(a) p̂ := zn1
1 zn2

2 p, q̂ := zn1
1 zn2

2 q ∈ R[z, z−1]C.
(b) The zero-degree coefficient of p̂ is nonzero.

Proof. (3 ⇒ 1) It is sufficient to notice that h = q̂/p̂, which, by the properties
imposed on p̂ and q̂, implies that h is proper with respect to C.
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(1 ⇒ 2) If h is proper with respect to C, then there exist polynomials

p̂ =
∑

(i,j)∈C
p̂ijz

i
1z
j
2, q̂ =

∑
(i,j)∈C

q̂ijz
i
1z
j
2

such that h = q̂/p̂ and such that p̂00 6= 0. It is not restrictive to assume p̂00 = 1. Let
y ∈ R[[z, z−1]]C be defined recursively as follows:

yhk = −
∑

(i,j)∈C
(i,j)6=(0,0)

p̂ijy(h− i, k − j) + q̂hk.

This equation implies that p̂y = q̂. Now let p, q ∈ R[z, z−1]C be such that h = q/p.
Then we have p̂q = q̂p = p̂py and so, since R[[z, z−1]]C is a domain, we can argue that
py = q.

(2 ⇒ 3) In the proof, we will explicitly suppose our cone to be specified as

C =

{
(i, j) ∈ N2 : j ≤ m1

m2
i

}
,

where m1,m2 are coprime positive integers. This can be done without loss of genera-
lity.

Let p, q ∈ R[z, z−1] be coprime polynomials such that h = q/p. Then there exist
r1, r2 ∈ Z such that p̂ := zr11 z

r2
2 p, q̂ := zr11 z

r2
2 q ∈ R[z] and such that p̂, q̂ are coprime

in R[z]. Using the fact that the thesis is true for regular cones [14, Lemma 3], we can
argue that

p̂y = q̂(6)

and y ∈ R[[z]] imply that the zero-degree coefficient of p̂ is nonzero. We want to show
now that p̂, q̂ ∈ R[z, z−1]C .

Let C̄ be the smallest cone containing both C and the support of p̂ (see Figure 1),
and let m̄1, m̄2 be coprime positive integers such that

C̄ =

{
(i, j) ∈ N2 : j ≤ m̄1

m̄2
i

}
.

If we show that C̄ = C or, equivalently, that (m1,m2) = (m̄1, m̄2), then we are done.
Let C1 and C2 be two regular cones such that

C1 ∩ C2 = C̄.
We can take (see Figure 2) C1 = N2 and C2 = {α(m̄1, m̄2) + β(l̄1, l̄2) : α, β ∈ N},
where l̄1 = l1−km̄1, l̄2 = l2−km̄2 and where l2m̄1− l1m̄2 = −1 and k is a big enough
positive integer. Observe that, since C2 contains the supports of both p̂ and y, C2
contains also the support of q̂.

Perform a change of coordinates transforming C2 into N2. After this change of
coordinates p̂, q̂ are still coprime polynomials in R[z] and y is still in R[[z]]. Since p̂, q̂
are coprime in R[z], there exists [8] a, b ∈ R[z] such that ap̂ + bq̂ = ψ ∈ R[z1]. This
fact together with (6) yields p̂ŷ = ψ, where ŷ := a+ by ∈ R[[z]]. Observe that, if we
consider p̂, a, b, y, ŷ as polynomials or power series in z1 having polynomials or power
series in z2 as coefficients, we have that

ŷ =
∑

ŷh(z2)zh1 =
∑

ah(z2)zh1 +
(∑

yi(z2)zi1

)(∑
bj(z2)zj1

)
,
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Fig. 2

and so we realize that

ŷh(z2) = ah(z2) +
∑

yh−i(z2)bi(z2).

This implies that

(∑
p̂i(z2)zi1

)(∑
ŷj(z2)zj1

)
=

L∑
k=l

ψkz
k
1 ,

where ψk ∈ R and where we can assume that l ∈ N is such that ψl 6= 0. Now, by
observing that p̂0(z2) 6= 0, we can argue that

p̂0(z2)ŷl(z2) = ψl ∈ R \ {0}.(7)

Assume now by contradiction that C̄ 6= C. This has two consequences. On one hand
this implies that the support of p̂0(z2) includes at least two points; on the other hand
we have that all the coefficients yi(z2) of the power series y and consequently also all
the coefficients ŷi(z2) of the power series ŷ are polynomials in z2. These facts are in
contradiction with (7).

Remark. Notice that condition 4 of Theorem 2 does not extend to the 2D case for
general cones in Z2. It can be seen that [14, Lemma 3] this extension holds true when
the cone is regular. Consequently, for general cones we have that condition 3 provides
the only way to check algorithmically the properness of a 2D rational function.

Notice, moreover, that the proof of the previous theorem is more difficult than the
proof of the analogous result for regular cones. The reason is that for regular cones the
ring R[z, z−1]C is isomorphic to the ring R[z] of polynomials in two variables, which
has many nice properties such as a Bezout equation-like condition for coprimeness.
When the cone C is not regular, the ring R[z, z−1]C does not possess such properties
any more. (It is not a unique factorization domain, and even the concept of coprime
polynomials is not well defined.) The key idea in the proof of the previous theorem
is that any cone is the intersection of two regular cones. In this way we can use the
results that are known for regular cones for proving this theorem.

We consider now the matrix case.
Definition 8. A 2D rational matrix H ∈ R(z)h×m is said to be proper with

respect to a cone C if its entries are 2D rational functions that are proper with respect
to C.
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We give also in this case a theorem providing several equivalent characterizations
of a 2D proper rational matrix.

Theorem 9. Let H ∈ R(z)h×m. The following facts are equivalent:
1. H is proper with respect to a cone C.
2. There exist P ∈ R[z, z−1]h×hC and Q ∈ R[z, z−1]h×mC such that H = P−1Q

and such that the degree-zero coefficient of P is an invertible square matrix.
3. There exists a unique formal power series Y ∈ R[[z, z−1]]h×mC such that for

all P ∈ R[z, z−1]h×hC and Q ∈ R[z, z−1]h×mC such that H = P−1Q we have that

PY = Q.

Proof. (2 ⇒ 1 ⇒ 3) These implications can be shown in the same way as we
proved the same implications in Theorem 4. Notice that uniqueness again follows
from the fact that R[z, z−1]C is a domain.

(3 ⇒ 2) Let P ∈ R[z, z−1]h×hC and Q ∈ R[z, z−1]h×mC be such that H = P−1Q.

Then condition 3 ensures the existence of Y ∈ R[[z, z−1]]h×mC such that PY = Q. If
Y = [yij ] and if we denote p := det(P ) and Q̄ := adj(P )Q = [q̄ij ], then we have that
pyij = q̄ij and so, by Theorem 7, we argue that hij = q̄ij/p is proper and hence that
H is proper with respect to C.

The definition of 2D properness, by translating matrix properness into scalar
properness, provides in this case the only way to verify algorithmically whether a
rational matrix is proper or not. An efficient algorithmic check can be done as follows.

Algorithm. Given a rational matrix H ∈ R(z)h×m.
Step 1. Represent it as H = [qij/pij ], where qij , pij ∈ R[z, z−1] are coprime.
Step 2. Let p be the least common multiple of the pij and let q̄ij := qijp/pij so

that H = [q̄ij/p].
Step 3. We have that H is proper with respect to a cone C if and only if there

exists n1, n2 ∈ Z such that
(a) p̂ := zn1

1 zn2
2 p, q̂ij := zn1

1 zn2
2 q̄ij ∈ R[z, z−1]C .

(b) The zero-degree coefficient of p̂ is nonzero.
Proof of the algorithm. One direction of the proof is easy. Suppose conversely

that H is proper. This implies that there exist monomials mij in z1, z2 such that
mijpij ,mijqij ∈ R[z, z−1]C and the zero-degree coefficients of mijpij are nonzero.
This implies that the polynomials pij belong to the set

U := {g ∈ R[z, z−1] : ∃ h1, h2 ∈ Z, zh1
1 zh2

2 g ∈ R[z, z−1]C
and zero-degree coefficient of zh1

1 zh2
2 g is nonzero}.

It is easy to see that this set is a multiplicative set. It is less straightforward to show
that it is saturated so that we have p, q ∈ U if and only if pq ∈ U [1]. This implies
that the least common multiple p of pij is still in U and so there exists n1, n2 ∈ Z
such that p̂ := zn1

1 zn2
2 p and the zero-degree coefficient of p̂ is nonzero. Observe finally

that mijpij divides p̂ and that p̂/mijpij ∈ R[z, z−1]C . This implies that

q̂ij = zn1
1 zn2

1 q̄ij = p̂
qij
pij

= p̂
mijqij
mijpij

∈ R[z, z−1]C .

Remark. In Step 2 we can take as polynomial p any common multiple of the
pij as, for instance, p =

∏
pij . Notice, however, that in general the least common

multiple is more convenient since often it has smaller support and, moreover, it can
be computed efficiently (see [2]).
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4. 2D systems in the behavioral approach. In the remaining part of the
paper we want to use the characterization of 2D proper rational matrices given in the
previous section for the analysis of the causality structure of a 2D behavioral system
given through a kernel representation. We start by giving a short introduction to the
theory of 2D systems in the behavioral approach.

It is known that, given a dynamical system, we can associate with it different
mathematical models, according to the aim the model was constructed for and to
the theoretical approach that has been chosen. When using behavioral models, a
dynamical system is characterized by the set of trajectories that constitute the so-
called behavior of the system. More precisely, in this setup a dynamical system is
described by a triple

Σ = (T,W,B),

where T is the time domain, W is the signal alphabet, and B ⊂ WT , the behavior ,
is the set of admissible trajectories. For 2D systems we assume that T = Z2 and
W = Rq. We refer the interested reader to [9, 10, 11] for a more complete introduction
to 2D behavioral systems theory.

An important subclass of 2D systems is constituted by the so-called AR 2D sys-
tems. They are 2D systems whose behavior is given by the set of solutions w∈(Rq)Z2

(set of all q-dimensional signals defined on Z2) of a linear difference equation of the
following kind: ∑

(i,j)∈S
Rijw(h+ i, k + j) = 0 ∀(h, k) ∈ Z2,(8)

where Rij ∈ Rl×q and S is a finite subset of Z2. Notice that any polynomial matrix

R =
∑

(i,j)∈S
Rijz

i
1z
j
2 ∈ R[z, z−1]l×q

naturally induces a polynomial linear operator

R(σ1, σ2) : (Rq)Z
2 −→ (Rl)Z

2

in the following way:

(R(σ1, σ2)w)(h, k) =
∑

Rijw(h+ i, k + j) ∀(h, k) ∈ Z2.

In this way we have that the behavior B determined by the difference equation (8)
coincides with kerR(σ1, σ2) and that the behavior of an AR system can always be
represented as the kernel of a polynomial linear operator, which is called kernel rep-
resentation.

5. Passing from kernel to I/O representations. Given a behavioral model
of a dynamical system, we could wonder whether an I/O representation of the same
system can be obtained or not. By answering this question we can check whether
there exists a cause-effect relation between the components of the signal.

Roughly speaking, if the constraints imposed by (8) are few with respect to the
number of components of the signal, some of them can be considered as inputs. In
fact, under this assumption, their value is arbitrarily assignable and determines the
value of the remaining components.
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The mathematical translation of this intuitive consideration is a rank condition
on the polynomial matrix R providing the kernel representation of the system. It can
be proved (see [9, 13, 15]) that if

rank R(z1, z2) = h,

then it is possible to split the components of w in m := q − h inputs (free variables)
and h outputs (nonfree variables). More precisely, if S is any permutation matrix
such that

RS = [P | −Q],

where P ∈ R[z, z−1]l×h, Q ∈ R[z, z−1]l×(q−h), and rank P = h, then we say that the
pair of matrices (P,Q) provides an I/O representation of the system because they
satisfy the properties of the following definition.

Definition 10 (see [9, 14]). Given a 2D AR system Σ(Z2,Rq, kerR(σ1, σ2)), the
difference equation

P (σ1, σ2)y = Q(σ1, σ2)u,(9)

where h + m = q, P ∈ R[z, z−1]l×h, Q ∈ R[z, z−1]l×m, and where y ∈ (Rh)Z
2

and

u ∈ (Rm)Z
2

, is an I/O representation of Σ if

1. B = {S[ yu ] : P (σ1, σ2)y = Q(σ1, σ2)u}, where S is a suitable q×q permutation
matrix;

2. u is free, i.e., for all u ∈ (Rm)Z
2

there exists y ∈ (Rh)Z
2

such that (9) holds;
3. no other component in y is free.

We often use the shorthand notation (P,Q) to denote the I/O representation (9).
Observe that, starting from an AR behavioral model, it is possible to extract finitely
many different I/O descriptions. They are obtained by choosing different permutation
matrices S that satisfy only the rank condition. In other words, they are obtained
selecting in different ways the inputs and the outputs among the components of w.

The concept of causality is strictly related to I/O representations. In the 2D case
its definition is more involved than for 1D systems, since there are different possible
ways to order the time domain T = Z2. As a consequence, there is more freedom in
the choice of the causality cone. Given a cone C, by the symbol (Rm)Z

2

C we mean the
set of all m-dimensional signals defined on Z2 and supported in C.

Definition 11. The I/O representation (9) is said to be causal with respect to

the cone C if for any u ∈ (Rm)Z
2

C there exists y ∈ (Rh)Z
2

C such that (9) holds.

Notice that the definition above suggests that the influence of u on y is causal
with respect to C. In can be shown, moreover, [14, Lemma 1] that y in the previous
definition is uniquely determined from u.

6. Characterization of causal I/O representations. In [14], a characteriza-
tion of causal I/O representations with respect to regular cones has been given. Our
aim here is to extend and generalize those results to general cones. Some of these
results can be generalized in a straightforward way. This is the case for Proposition 3
[14], which will be used next. This proposition, stated for regular cones, guarantees
that the causality of an I/O representation

P (σ1, σ2)y = Q(σ1, σ2)u(10)
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depends only on a coprime representation of the polynomial matrices specifying the
system. Thus, if P̄ ∈ R[z, z−1]h×h and Q̄ ∈ R[z, z−1]h×m are coprime polynomial
matrices such that

P = FP̄ , Q = FQ̄,

with F a full column rank polynomial matrix of suitable dimensions, then (10) is
causal with respect to a regular cone Cr if and only if

P̄ (σ1, σ2)y = Q̄(σ1, σ2)u

is causal with respect to it. It is easy to see that the proof still holds if we consider
general cones.

Let (P,Q) be an I/O representation of a 2D AR system that is causal with respect
to a cone C. Define the inputs δ(i), i=1, . . . ,m, as

δ(i)(t) :=

{
ei, t= (0, 0),
0 otherwise,

where ei is the ith vector of the canonical base in Rm. If y(i) ∈ (Rh)Z
2

C is the corre-
sponding output, namely,

P (σ1, σ2)y(i) = Q(σ1, σ2)δ(i),(11)

we define the impulse response of the 2D system to be the matrix-valued sequence

Y := [y(1) . . . y(m)] ∈ (Rh×m)Z
2

C .

It is worth pointing out that, as shown in [14], the causality of an I/O representa-
tion is equivalent to the existence of the impulse response, since the impulse response
determines the way in which the system maps input signals supported in C into output
y by the convolution

y(h, k) :=
∑

(i,j)∈Z2

Y (h− i, k − j)u(i, j).

Notice that, since u and Y are both supported in C, the sum is always finite and,
moreover, also the support of y is included in C.

Now we are in a position to state the following theorem, which allows us to
characterize the causality structure of a 2D AR system.

Theorem 12. Let

P (σ1, σ2)y = Q(σ1, σ2)u,(12)

with P ∈ R[z, z−1]l×h and Q ∈ R[z, z−1]l×m, be an I/O representation of a 2D AR
system. Then (12) is causal with respect to a cone C if and only if the rational matrix
H ∈ R(z)h×m such that Q = PH is proper with respect to the cone −C.

Proof. Let P̄ ∈ R[z, z−1]h×h and Q̄ ∈ R[z, z−1]h×m be coprime polynomial ma-
trices such that P = FP̄ ,Q = FQ̄, where F is a full column rank polynomial matrix
of suitable dimensions, then, as mentioned above, (12) is causal with respect to C if
and only if

P̄ (σ1, σ2)y = Q̄(σ1, σ2)u(13)
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is causal with respect to C. Observe that H = P̄−1Q̄ and that, moreover, it is not
restrictive to assume that P̄ , Q̄ have entries in R[z, z−1]−C . Notice that (13) is causal
with respect to C if and only if there exists the impulse response, which is a matrix-
valued sequence Y ∈ (Rh×m)ZC satisfying the matrix difference equation∑

ij

P̄ijY (h+ i, k + j) = Q̄−h,−k ∀(h, k) ∈ Z2.

If we define the power series Ȳ :=
∑
ij Y (i, j)z−i1 z−j2 ∈ R[[z, z−1]]h×m−C , then we have

that Q̄ = P̄ Ȳ . By Theorem 9 this is equivalent to the fact that H is proper with
respect to −C.

Remarks. Notice that by using Theorem 9 the proof of the previous theorem is
more direct than the proof of the analogous result [14, Theorem 1] for regular cones.
In both cases the main idea is to characterize properness of a rational matrix in terms
of the existence of a power expansion that is supported in the cone. For regular cones
this has been done by using the properties of coprime matrix fraction descriptions of
rational matrices. However, this method works only for regular cones. This difficulty
has been overcome in Theorem 9 simply by using the definition of proper rational
matrices, which is in terms of the properness of its scalar entries. This method, which
obviously works also for regular cones, is simpler and more natural than the technique
used in [14, Theorem 1].

7. Minimal causality cones and parametrization of causal I/O repre-
sentations. Consider an I/O representation (P,Q). The theorem we proved in the
previous section allows us to determine the set of all cones C such that (P,Q) is causal
with respect to C. These cones are called causality cones for the I/O representation.
Notice that, if C is a causality cone and C′ ⊇ C, then also C′ is a causality cone. There-
fore, the set of causality cones is completely determined by its finite subset M(P,Q)
constituted by the minimal causality cones.

In practice the construction of this set reduces to a simple procedure based on the
previous theorem. Let H ∈ R(z)h×m be the rational matrix such that Q = HP and
represent it as H = [qij/pij ], where qij , pij ∈ R[z, z−1] are coprime. Let p be the least
common multiple of pij and q̄ij := qijp/pij so that H = [q̄ij/p]. As suggested in the
algorithmic check of properness proposed above, H is proper with respect to a cone C if
and only if there exist n1, n2 ∈ Z such that p̂ := zn1

1 zn2
2 p, q̂ij := zn1

1 zn2
2 q̄ij ∈ R[z, z−1]C

and the zero-degree coefficient of p̂ is nonzero. For this reason the finite set of minimal
causality cones can be obtained from the polynomials p and q̄ij in the following way:

Step 1. Determine the convex hull of supp (p) and from this the finite set V =
{v1, . . . , vk} of the vertices of this convex hull.

Step 2. For each vi ∈ V consider the following set of cones:

C(vi) =

C : vi − C ⊇ supp (p) ∪
⋃
ij

supp (q̄ij)

 .

Step 3. It is clear that, when the set C(vi) is nonempty, it contains a cone Ĉi that
is smaller than every other cone in C(vi). Then by Theorem 12 the set M(P,Q) of
the minimal causality cones for the I/O representation (P,Q) coincides with the set
of all the cones Ĉi.

It may happen that, for a given I/O representation (P,Q), the set M(P,Q) is
empty. However, there exists a certain freedom in constructing an I/O representation
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from a kernel representation, which corresponds to the freedom that there exists in
the choice of h linearly independent columns in a rank h polynomial matrix R ∈
R[z, z−1]l×q providing the kernel representation of the AR system. The family of the
sets M(P,Q), when (P,Q) varies in the set of all possible I/O representations of the
AR system, provides a complete description of its causality structure. It is important
to notice that, as a direct consequence of [14, Theorem 2], we have that there always
exists an I/O representation (P,Q) such that M(P,Q) is nonempty.

Example 1. Let Σ be a 2D AR system whose behavior is the kernel of the poly-
nomial matrix

R = [z1z2 | − z1 − z2 − z2
1z2 − z1z

2
2 ].

We can consider two I/O representations of Σ. If we let P = z1z2 and Q = z1 + z2 +
z2

1z2 +z1z
2
2 , we have thatM(P,Q) = ∅. If, conversely, we let P = z1 +z2 +z2

1z2 +z1z
2
2

and Q = z1z2, we obtain easily thatM(P,Q) is constituted by four cones as shown in
Figure 3. For convenience in this figure and in the figures relative to the example that
follow the minimal causality cones are translated in such a way that their vertices
coincide with the vertices of the convex hull of p.

Example 2. Let Σ be a 2D AR system whose behavior is the kernel of the poly-
nomial matrix

R = [z1 − z2 | 1].
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This is the same 2D AR system considered in Example 1 in [14]. We can consider
two I/O representations of Σ. If we let P = z1 − z2 and Q = −1, the set M(P,Q)
contains the cones shown in Figure 4, while if we let P = −1 and Q = z1 − z2, we
obtain easily that M(P,Q) is constituted by only one cone as shown in Figure 5.

Example 3. Let Σ be a 2D AR system whose behavior is the kernel of the poly-
nomial matrix

R =

[
z1 − z2

2 0 2z1z2 − 1
1 z1 − z2 1

]
.

This is the same 2D AR system considered in Example 2 in [14]. We can consider
three I/O representations of Σ. If we let

P =

[
z1 − z2

2 0
1 z1 − z2

]
, Q =

[
2z1z2 − 1

1

]
,

then following the algorithm presented above, we obtain that p = z2
1−z1z2−z1z

2
2 +z3

2 ,
q̄11 = −z1 + z2 + 2z2

1z2 − 2z1z
2
2 , and q̄21 = 1 − 2z1z2 + z1 − z2

2 , and so, as shown in
Figure 6, we see that the set M(P,Q) contains two cones.

Finally, if we consider the other two remaining I/O representations, we obtain
the sets of minimal causality cones shown in Figures 7 and 8.
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