MEMS RESONATORS THAT ARE ROBUST TO PROCESS-INDUCED FEATURE WIDTH VARIATIONS

Rong Liu, Brad Paden and Kimberly Turner
University of California, at Santa Barbara
Santa Barbara, CA, 93106

Abstract

In this paper, a frequency stability analysis and design method for MEMS resonators is presented. The frequency characteristics of a laterally vibrating resonator are analyzed. With the fabrication error on the sidewall of the structure being considered, the first and second order frequency sensitivities to the fabrication error are derived. A simple relationship between the proof mass area and perimeter, and the beam width, is developed for single material structures, which expresses that the proof mass perimeter times the beam width should equal six times the area of the proof mass. Design examples are given for the single material and multi-layer structures. The results and principles presented in the paper can be used to analyze and design other MEMS resonators.

1. Introduction

Resonators have been widely used as a key component in MEMS devices, such as in micro-gyroscopes[1,2,3], microvibrators[4], micro-engines[5], and microwave systems[6]. Resonators are actuated, usually electrostatically, to oscillate at their natural resonant frequency, so that the robustness of the design frequency to process variations is one of the most important functional properties for the resonator design. Frequency stability of a resonator can directly affect the quality of the system in which it serves as a component. For the lateral vibrating rate gyroscopes, the frequency matching for their two vibrating modes is important for the output sensitivity. If frequency of any one of the modes shifts, the output signal’s accuracy will be decreased. Although symmetry in these gyroscopes helps the two modes to track to first order, it is useful to enhance the frequency matching by designing the resonant frequency to be insensitive to process variations.

In microvibrators, several resonators impact a bar to make it move in the plane of the chip. If the impacting frequencies of the resonators are not harmonic, the motion of the bar will be unpredictable. Similarly, the previously mentioned micro-engine is actuated by two orthogonal resonators, the rotational stability of the engine is affected by the synchrony of these two resonators. Finally, in microwave systems, the resonator is used as an IF or RF filter. Therefore the frequency stability of the resonator in this application is particularly important as its frequency determines the system performance in a fundamental way.

Several factors affect the stability of the resonator frequency, which include mass-loading [7], Brownian forces[8] and fabrication variations[9]. The mass-loading that is the instantaneous differences in the rate of adsorption and desorption of contaminant molecules to and from the resonator surface causes mass fluctuation, which in turn leads to frequency fluctuation. Yong and Vig have given the mathematical expression to quantify the mass-loading effects on phase noise. A Brownian force is produced by the impingement of gas/air molecules on the structure, which Gabrielsson has studied theoretically. Although it was known that the fabrication errors affect the frequency stability[11], fewer researchers have focused on this study because of the structure complexity and differences in micromachining methods.

With present micromachining techniques, the fabrication process variation in MEMS is inevitable and it will continue to be the case when devices are miniaturized to the point of process limitations. For example, the fabrication tolerance for the width of a typical suspension beam is reported to be about 10% in [10]. Even the same fabrication errors will cause different frequency variations for different resonator structures. In this paper, the frequency robustness for a folded-beam lateral vibrating resonator is analyzed. Based on the analysis, an optimum design method is presented for the resonator to obtain minimum frequency sensitivity. A simple relationship between the area and perimeter of proof mass and beam width is derived for single material structures.

2. Analysis of a folded-beam suspended resonator with single structural material

A folded-beam suspended resonator is shown in Fig 1, where the cross-section of the beams is assumed to be rectangular. The merits of this kind of resonator include a wide frequency separation between the desired mode of oscillation and higher-frequency parasitic modes, and a smaller size than cantilevered beam resonators.
One objective of this paper is to derive a simple relationship between the design parameters to ensure low sensitivity to photo- and etch-induced variations in line-width.

The lateral spring constant of the eight combined folded beams is given by

\[
k = \frac{2a^3 b E}{L^3}
\]

where \(a\) and \(b\) are the width and thickness of the beams respectively, \(L\) is the length of each beam and \(E\) is the modulus of elasticity of the beam material.

The natural frequency of the resonator can be expressed as

\[
\omega_0 = \sqrt{\frac{k}{M_{\text{eff}}}} = \sqrt{\frac{2a^3 b E}{M_{\text{eff}} L^3}}
\]

where, \(M_{\text{eff}}\) is the effective mass including the proof mass and an equivalent mass contributed by the folded-beam. Assuming that the thickness of the mass (in the dimension normal to the chip) is the same as that of the beams and that the structure consists of only one material, we have

\[
M_{\text{eff}} = \rho b A_{\text{eff}} = \rho b (A + 8 \mu L a)
\]

where \(A_{\text{eff}}\) is the effective area; \(\rho\) is the density of the material, \(A\) is the area of the proof mass excluding cut-outs etc., \(\mu\) is the mass equivalence coefficient (0.38 for folded-beam[6]). Presently, most proof masses are rectangular plates with attached comb-drive fingers and are solid or trussed.

Substituting (3) into (2) yields the natural frequency of the resonator

\[
\omega_0 = \sqrt{\frac{2a^3 E}{\rho A_{\text{eff}} L^3}}
\]

In computing (4), \(b\) is cancelled because it appears both in the numerator and in the denominator. This shows that when the thickness of beam is the same as that of the moving mass the natural frequency of the system is independent of the thickness.

Hence it is reasonable to assume that the fabrication error is only on the "sidewalls" of the structure, i.e. there is a small width error \(\delta\) in the lateral dimensions of folded-beam and proof mass. (It is shown in the appendix that our results hold for arbitrary “sidewall” errors.) Then the natural resonant frequency becomes

\[
\omega_0(\delta) = \sqrt{\frac{2(a + 2\delta)^2 E}{\rho A_{\text{eff}}(\delta) L^3}}
\]

where \(A_{\text{eff}} (\delta) = A(\delta) + 8\mu L(a + 2\delta)\), and the approximation \(\delta \ll L\) is used to simplify the influence of \(\delta\) on the length of the beams.

Therefore the first order sensitivity of \(\omega_0\) with respect to \(\delta\) is given as

\[
\frac{\partial \omega_0}{\partial \delta} = \frac{3}{2} \sqrt{\frac{2(a + 2\delta)^2 E}{\rho A_{\text{eff}}(\delta) L^3}} \frac{1}{2} \sqrt{\frac{2(a + 2\delta)^2 E}{\rho A_{\text{eff}}(\delta) L^3}} \frac{\partial A_{\text{eff}} (\delta)}{\partial \delta}
\]

It is easily obtained that the derivative of the area \(A\) with respect to the sidewall fabrication error \(\delta\) is directly proportional to the perimeter of the area in question including the perimeter of enclosed holes and voids. That is

\[
\frac{\partial A_{\text{eff}} (\delta)}{\partial \delta} = P_{\text{eff}}(\delta) = P(\delta) + 16\mu L
\]

where \(P(\delta)\) is the perimeter of the proof mass.

Substituting (7) into (6) yield

\[
\frac{\partial \omega_0}{\partial \delta} = \frac{3}{2} \sqrt{\frac{2(a + 2\delta)^2 E}{\rho A_{\text{eff}}(\delta) L^3}} \left(3 - \frac{(a + 2\delta)[P(\delta) + 16\mu L]}{2A_{\text{eff}}(\delta)}\right) \sqrt{\frac{2(a + 2\delta)^2 E}{\rho A_{\text{eff}}(\delta) L^3}}
\]

The second order sensitivity of \(\omega_0\) with respect to \(\delta\) can be derived as

\[
\frac{\partial^2 \omega_0}{\partial \delta^2} = \frac{3}{2} \frac{P_{\text{eff}}(\delta)(a + 2\delta)}{A_{\text{eff}}(\delta)} - \frac{4(a + 2\delta)^2}{A_{\text{eff}}(\delta)} + \frac{3(P_{\text{eff}}(\delta))^2(a + 2\delta)^2}{4(A_{\text{eff}}(\delta))^2} \sqrt{\frac{2E}{(a + 2\delta) \rho A_{\text{eff}}(\delta) L^3}}
\]

To set \(\frac{\partial \omega_0}{\partial \delta}\) and \(\frac{\partial^2 \omega_0}{\partial \delta^2}\) equal zero, the following conditions must be satisfied

\[
\left.\frac{\partial \omega_0}{\partial \delta}\right|_{\delta} = 3A_{\text{eff}}(\delta) - \frac{1}{2} P_{\text{eff}}(\delta)(a + 2\delta) = 0
\]

\[
\left.\frac{\partial^2 \omega_0}{\partial \delta^2}\right|_{\delta} = 3[A_{\text{eff}}(\delta) - \frac{1}{2} P_{\text{eff}}(\delta)(a + 2\delta)]^2 - 4A_{\text{eff}}(\delta)(a + 2\delta)^2 = 0
\]

Setting \(\delta\) equal zero, and substituting (6) and (7) into (10) and (11) yield
\[
\frac{\partial \omega_0}{\partial \delta} \bigg|_{\delta=0} = 3A - \frac{1}{2} Pa + 16\mu La = 0 \tag{12}
\]

\[
\frac{\partial^2 \omega_0}{\partial \delta^2} \bigg|_{\delta=0} = 3[A - \frac{1}{2} Pa]^2 - 4(A + 8\mu La)a^2 = 0 \tag{13}
\]

If the parameters of the structure are designed to satisfy the (12) or, better yet, both (12) and (13), the frequency variation due to process variations can be reduced significantly.

However, it is not usually the case that both (12) and (13) can be satisfied, as substituting (12) into (13) yields

\[
3A + 24\mu La = a^2 \tag{14}
\]

\[
\frac{1}{2} P + 8\mu L = a \tag{15}
\]

Generally, the width of the beam is small, and to satisfy both (14) and (15) the area and perimeter of the proof mass have to be less than \(a^2\) and \(2a\) respectively, which is unreasonable for most MEMS resonators. Therefore, only the first order sensitivity of \(\omega_0\) with respect to \(\delta\) can be designed to be zero in most cases. When the area of the proof mass is much larger than the area of the beam, (12) reduces to a convenient rule of thumb: “the perimeter of the proof mass times the beam width should be roughly six times the area of the proof mass. i.e. \(Pa = 6A\).”

3. Analysis for multi-layer structures

For the sake of electrical conductivity, beams and proof masses in MEMS resonators are usually coated with two material layers -- one oxide layer with thickness \(t_1\) and one metal layer with side-thickness \(t_2\) and top-thickness \(t_3\), as shown in Fig. 2.

![Fig2 Folded beam coated with two added material layers](image)

The moment of the inertial of the oxide layer and metal layer are given respectively by

\[
I_{c_1} = \frac{(a + 2t_1)^3(b + t_1) - a^3b}{12} \tag{16}
\]

\[
I_{c_2} = \frac{(a + 2(t_1 + t_2))^3(b + t_1 + t_3) - (a + 2t_1)^3(b + t_1)}{12} \tag{17}
\]

Because the coat-layers and the innermost silicon beam have the same lateral deflection \(\Delta X\) on the tip of the beam, the following expression can be given as

\[
\Delta X = \frac{P_1L^3}{3E_{c_1}I_{c_1}} = \frac{P_2L^3}{3E_{c_2}I_{c_2}} = \frac{P_3L^3}{Ea^3b} \tag{18}
\]

where \(P\) is overall force on the tip of the beam, \(P_1, P_2, P_3\) are the forces of \(P\) on the oxide layer, metal layer and silicon beam respectively. \(E_{c_1}, E_{c_2}\) and \(E\) are the Young’s modulus for three materials.

Defining the effective beam width, effective beam thickness and effective Young’s modulus respectively as

\[
a_{\text{eff}} = (a + 2(t_1 + t_2))
\]

\[
b_{\text{eff}} = (b + t_1 + t_3)
\]

\[
E_{\text{eff}} = E_{c_2} - \frac{(E_{c_2} - E_{c_1})(a + 2t_1)^2(b + t_1)}{(a + 2(t_1 + t_2))^3(b + t_1 + t_3)} \tag{19}
\]

\[
\frac{(E_{c_1} - E)a^3b}{(a + 2(t_1 + t_2))^3(b + t_1 + t_3)}
\]

(18) becomes

\[
\Delta X = \frac{4PL^3}{E_{\text{eff}}a_{\text{eff}}^3b_{\text{eff}}} \tag{20}
\]

If the fabrication errors occur only on innermost beam, e.g. \(a\) becomes \(a + 2\delta\), then the sensitivity of effective elastic modulus can be simply expressed as

\[
\frac{\partial E_{\text{eff}}}{\partial \delta} = \frac{-12(E_{c_2} - E_{c_1})(a + 2\delta + 2t_1)^2(b + t_1)}{(a + 2\delta + 2(t_1 + t_2))^3(b + t_1 + t_3)}
\]

\[
- \frac{12(E_{c_1} - E)(a + 2\delta)^2b(t_1 + t_2)}{(a + 2\delta + 2(t_1 + t_2))^3(b + t_1 + t_3)}
\]

(21)

If the \(t_1\) and \(t_2\) are much smaller than the width of the beam, it can be assumed that the effective Young’s modulus remains constant in the frequency sensitivity analysis. In this case, the first and second sensitivities to the fabrication errors are similar to resonators that are not coated.

When there are fabrication errors in the lateral dimension of the layered materials, the effective modulus of elasticity will change too. Although the computation of sensitivities is straight-forward using computational algebra software such as Mathematica or Matlab, it is not useful to include the output of such calculation here.

Besides the above deformation equations, the mass of the proof mass will also have different expressions than that for a single material structure. The expression is dependent on construction, trussed or solid, of the proof mass, and will be given in the following section.
4. Example of a robust design

4.1 Single material structure

A proposed structure for a resonator design is shown in Fig. 3. The trussed comb-driven mass is suspended by two symmetric folded-beams. The trussed structure for the mass simplifies the under-releasing of the structure from the substrate in, say, SCREAM process [12]. Also, in some designs (not ours), it is useful that the truss will decrease the squeeze-film damping when there is a vertical vibration [11].

The proof mass is divided by row and column walls into smaller squares of dimension \((k \times k)\) except for the rightmost or leftmost sub-regions which are rectangles of dimension \(1/2k \times k\). The width of all the walls in the trussed proof mass is \(t\); the number of row and column walls on the proof mass not including the outside walls are \(M\) and \(N\) respectively; the width and length of the comb fingers are \(d\) and \(g\) respectively, the number of comb fingers on each side is \(n_f\). The four connectors that connect the folded beams to the proof mass are solid rectangles with width \(p\) and length \(q\).

The design task is to specify the above parameters in addition to the folded-beam parameters \(L\) and \(a\), and the structure thickness \(b\), so that the natural resonant frequency of the structure equals \(\omega_0\) and its first order sensitivity to sidewall fabrication error is zero.

![Diagram of a folded-beam suspended comb-drive resonator](image)

Fig. 3 Folded-beam suspended comb-drive resonator, where \(L\) is the length of each beam, proof mass width \(m\) comprises \(M + 2\) row walls, and length \(n\) comprises \(N + 2\) column walls.

The dimension \(k\) of the inner square satisfies

\[
k = \frac{n - (N + 2)t}{N + 1/2} = \frac{m - (M + 2)t}{M + 1}
\]

The solid area on the proof mass can be expressed as

\[
A = 2n_f d g + 4pq + nm
\]

\[-\left(n - (N + 2)t \right) m - (M + 2)t \right] \]

where, \(2n_f d g\) is the area of the comb finger; \(4pq\) is the area of four connectors; \(nm\) is the overall area of rectangular proof mass.

\[
\left[n - (N + 2)t \right] \left(m - (M + 2)t \right) \]

is the total area of all inner trussed squares.

The overall perimeter of the proof mass is given by

\[
P = 4n_f g - 4(2q - a) + 2(n + m)
\]

\[
+ 2(M + 1)\left[n - (N + 2)t \right] + 2(N + 1)\left[m - (M + 2)t \right]
\]

Substituting (23) and (24) into (4), (12) and (13) can yield a set of equations (the algebra is omitted as it is straightforward). These equations plus (22) can be regarded as constraint conditions for solving for the structural parameters. The number of parameters is much larger than the number of equations, so that these equations are under-defined and there is some design freedom.

Practically, the parameters \(L\) and \(m\) can be initially given based on overall dimensional requirement of the whole device. The width \(p\) and length \(q\) of the connectors can also be given as a function of folded beam width. According to the designed electrostatic force, the size of the comb finger can be determined, which include \(d\), \(n_f\), and \(g\). Since the total width of the fingers and gaps can not exceed the width of the device, a constraint condition has to be added as

\[
2n_f d < m
\]

\(t\) can be initially given. After the above 8 parameters \((L, m, t, d, n_f, g, p, q)\) are determined, there are still four parameters \((a, n, M, N)\) to be resolved with equations (4), (12), (13) and (14).

Rather than going through a complete design process involving detailed electrostatic design etc., these eight parameters are set to typical values found in the literatures:

\[
L = 500\mu m, \quad m = 350\mu m
\]

\[
p = 8\mu m, \quad q = 10\mu m, \quad t = 1\mu m
\]

\[
n_f = 30, \quad d = 4\mu m, \quad g = 30\mu m
\]

The material constants are chosen as those for silicon

\[
\rho = 2330kg/m^3, \quad E = 190GPa
\]

The natural frequency of the resonator is selected to be 55kHz, which is in the range of typical MEMS resonator frequencies. So the angular frequency is

\[
\omega_0 = 2\pi \times 5500 = 34557.519(rad/sec)
\]

From (4), (14) and (15), the beam width for first and second order insensitivity can be initially calculated to be

\[
a = \frac{\omega_0^2 L^2 \rho}{6E} = 3.05 \times 10^{-4} \mu m
\]
which is too small for current MEMS fabrication technologies. Even though the width can be increased by increasing the beam length and natural frequency, the increase is limited and not sufficient to make the width consistent with current fabrication methods. Therefore, as mentioned previously, satisfying both the first and second order sensitivity conditions is almost impossible. When only the first condition is considered, the width of the folded beam can be set to $4 \mu m$. Hence the solid area and perimeter can be calculated by solving (4) and (12)

$$A = \frac{2a^2E}{\omega_b^2L^3\rho} - 8\mu La = 6.38418 \times 10^4 \mu m^2$$

$$P = \frac{12a^2E}{\omega_b^2L^3\rho} - 16\mu Lo = 1.01843 \times 10^5 \mu m$$

Now that the required area and perimeter of the proof mass are determined, solving (16), (17) and (18) with respect to variables m, M and N yields

$$n = 391.739 \mu m$$

$$N = 79.5717$$

$$M = 88.7765$$

Because both N and M must be integers, the N and M in (26) are rounded to 80 and 89 respectively. Then t, l and m should be adjusted to satisfy (16), (17) and (18),

$$t = 0.999112 \mu m$$

$$n = 390.296 \mu m$$

$$m = 349.493 \mu m$$

From (16), the width of the inner square can be calculated as

$$k = \frac{n - (N + 2)t}{(N + 1/2)} = 3.32641 \mu m$$

4.2 Multi-layer structure

In this subsection we outline the design of a multi-layer structure. The design steps are similar to the single material design except for different expressions of design conditions. The top-view of the multi-layer structure is same as Fig.3. From (20), the lateral spring constant of the folded beams is given by

$$k_{eff} = \frac{2a_{eff}^3b_{eff}E_{eff}}{L^3}$$

The natural frequency of the resonator can be expressed as

$$\omega_0 = \sqrt{\frac{k_{eff}}{M_{eff}}} = \sqrt{\frac{2a_{eff}^3b_{eff}E_{eff}}{M_{eff}L^3}}$$

where, M_{eff} is the effective mass comprising of the proof mass M_{proof} plus an equivalent mass due to the folded beam M_{beam}

$$M_{eff} = M_{proof} + \mu M_{beam}$$

From the construction, the mass M_{proof} and M_{beam} can be expressed respectively as

$$M_{proof} = 4q(\rho_0 g + t_1(2b + p + 2t_1)\rho_1$$

$$+ [2t_2(b + t_1) + t_1(p + 2(t_1 + t_2))]\rho_2$$

$$+ 2n_f g\{db\rho + t_1(2b + d + 2t_1)\rho_1$$

$$+ [2t_2(b + t_1) + t_1(d + 2(t_1 + t_2))]\rho_2$$

$$+ \{[2m + N[M - (M + 2)(t + 2(t_1 + t_2))]$$

$$+ (M + 2)[n - 2(t + 2(t_1 + t_2))]$$

$$\times \{t_2 + t_1(2b + t + 2t_1)\rho_1$$

$$+ [2t_2(b + t_1) + t_1(2(t_1 + t_2))]\rho_2$$

$$M_{beam} = 8L(ab\rho + t_1(2b + a + 2t_1)\rho_1$$

$$+ [2t_2(b + t_1) + t_1(a + 2(t_1 + t_2))]\rho_2$$

The fabrication error here is assumed to occur only on the sidewalls of the innermost structure, i.e. there is a small width error δ in the lateral dimension of all innermost components of the folded-beam and proof mass. There are no errors in the thickness. Then the natural resonant frequency becomes

$$\omega_0(\delta) = \sqrt{\frac{2(a_{eff} + 2\delta)^3b_{eff}E_{eff}(\delta)}{M_{eff}(\delta)L^3}}$$

Therefore the first order sensitivity of ω_0 with respect to δ can be given as

$$\frac{\partial \omega_0}{\partial \delta} = 3 \sqrt{\frac{2(a_{eff} + 2\delta)^3b_{eff}E_{eff}(\delta)}{M_{eff}(\delta)L^3}}$$

$$+ \frac{1}{2} \sqrt{\frac{2(a_{eff} + 2\delta)^3b_{eff}E_{eff}(\delta)}{M_{eff}(\delta)L^3}} \frac{\partial M_{eff}(\delta)}{\partial \delta}$$

$$- \frac{1}{2} \sqrt{\frac{2(a_{eff} + 2\delta)^3b_{eff}E_{eff}(\delta)}{M_{eff}(\delta)L^3}} \frac{\partial M_{eff}(\delta)}{\partial \delta}$$

where the

$$\frac{\partial M_{eff}(\delta)}{\partial \delta}_{\delta=0}$$

can be expressed as
\[
\frac{\partial M_{\text{eff}}(\delta)}{\partial \delta}\bigg|_{\delta=0} = \{8q + 4n_f g + 2(N + 2)m + (M + 2)n - (N + 2)(M + 2)(t + 2(t_1 + t_2)) - 16 \mu L (b + t_1 + t_2) + 2(M + N + 4 - (N + 2)(M + 2)) \} \\
\times \{b + t_1(t + 2(t_1 + t_2))\rho_1 + (2t_2(b + t_1) + t(t + 2(t_1 + t_2)))\rho_2 \}
\]

(41)

So setting \(\frac{\partial \omega_s}{\partial \delta} \bigg|_{\delta=0} = 0\) yields

\[
3M_{\text{eff}} E_{\text{eff}} + \frac{M_{\text{eff}} a_{\text{eff}}}{2} \frac{\partial E_{\text{eff}}(\delta)}{\partial \delta} \bigg|_{\delta=0} = 0
\]

(42)

From (21), \(\frac{\partial E_{\text{eff}}(\delta)}{\partial \delta} \bigg|_{\delta=0}\) can be expressed as

\[
\frac{\partial E_{\text{eff}}(\delta)}{\partial \delta} \bigg|_{\delta=0} = \frac{12(E_{\text{c2}} - E_{\text{c1}})(a + 2t_1)^2(b + t_1)\rho_2}{a_{\text{eff}}^2 b_{\text{eff}}}
\]

(43)

On the proof mass, the inner square condition becomes

\[
k = \frac{n - (N + 2)(t + 2(t_1 + t_2))}{N + 1/2}
\]

(44)

From the above analysis, when the multi-layer structure resonator is designed, three constraint conditions, i.e. (36), (42) and (44), should be satisfied. The design processes are similar to those of the single material structure resonator. Most of the design parameters are determined empirically based on process induced design rules. Only three variables are left to solve the above three equations (36), (42) and (44).

In the case of multi-layer structures, if other fabrication errors, such as thickness errors and coated-layer fabrication errors, are considered, the analysis and design methods are similar to the above analysis, but there is no pedagogical benefit in including the algebra here. With these fabrication errors being considered, the natural vibrating frequency of the designed resonator will be robust.

5. Conclusion

In this paper, the frequency sensitivity characteristics of micro-resonator are analyzed, and a method to make the frequency robust to fabrication error of line width variation is presented.

For a resonator fabricated with only one material, the first and second order sensitivities of frequency to the line-width fabrication error were derived. With the assumption of the beam and proof mass having the same thickness, the natural frequency is independent of the thickness, so that the thickness fabrication error can be ignored when considering the frequency sensitivity.

When both the first and second order sensitivities are set to be satisfied at the same time, the results will make the design unreasonable (excessively wide beam and excessively small proof mass). Therefore, only the first order sensitivity is considered in the design example. A rule of thumb for robust resonator design is that the proof mass perimeter times the beam width should be six times the area of the proof mass.

For the multi-layer structure, its effective modulus of elasticity and mass are given, and its first order frequency sensitivity to the sidewall fabrication error of the innermost beam is derived. The results can be used to analyze the effect of other fabrication errors on the structure.

The concepts presented here can be applied to more complex systems using numerical optimization or computer algebra software such as Mathematica or Matlab.

6. References

Appendix:
Equations for MEMS resonator with arbitrary profile of sidewall fabrication error

\[\Delta X = \frac{4PL^3}{E \int_0^L [a + 2\delta (y)]^3 dy} \] \hspace{1cm} (A-2)

Then the elastic coefficient of the beam can be obtained as

\[k = \frac{E \int_0^L [a + 2\delta (y)]^3 dy}{4L^3} \] \hspace{1cm} (A-3)

The mass of a unit length of beam can be expressed as

\[M_{\text{unit}} = \rho \int_0^L [a + 2\delta (y)] dy \]

\[= \rho b (a + 2\delta_{\text{mean}}) \] \hspace{1cm} (A-4)

where \(\delta_{\text{mean}} = \frac{\int_0^L \delta (y) dy}{b} \) is the mean fabrication error on one side of the beam. Equation (A-4) has the same form as that for a beam with line-width fabrication error, except the constant \(\delta \) for with line-width fabrication error beam is replaced with \(\delta_{\text{mean}} \). So the mass of the proof mass which can be obtained similarly as \(\delta_{\text{mean}} \) is considered as the mean fabrication error on the width of all structures.

\[M = \rho b A (\delta_{\text{mean}}) \] \hspace{1cm} (A-5)

where \(A(\delta_{\text{mean}}) \) is the area of the proof mass with fabrication error.

The natural frequency of the folded beam suspended resonator can be given as

\[\omega_0 = \sqrt{\frac{2E \int_0^L [a + 2\delta (y)]^3 dy}{b \rho A \delta_{\text{mean}} L^2}} \]

\[= \sqrt{\frac{2Eb(a + 2\delta_{\text{mean}})^3 + 2E[12a(\int_0^L \delta (y)^2 dy - \delta_{\text{mean}}^2 b)]}{b \rho A \delta_{\text{mean}} L^2}} \]

\[= \frac{8(\int_0^L \delta (y)^3 dy - \delta_{\text{mean}}^3 b)}{b \rho A \delta_{\text{mean}} L^2} \] \hspace{1cm} (A-6)

Because the following equations are satisfied

\[2E[12a(\int_0^L \delta (y)^2 dy - \delta_{\text{mean}}^2 b)] \]

\[+ 8(\int_0^L \delta (y)^3 dy - \delta_{\text{mean}}^3 b) \bigg|_{\delta=0} = 0 \] \hspace{1cm} (A-7)
\[
\frac{\partial}{\partial \delta_{\text{mean}}} \left[2E[12a(\int_0^b \delta(y)^2 \, dy - \delta_{\text{mean}}^2 b) + 8(\int_0^b \delta(y)^3 \, dy - \delta_{\text{mean}}^3 b)] \right] = 0
\]

the first sensitivity of the natural frequency to the mean fabrication error can be expressed as

\[
\frac{\partial \omega_0}{\partial \delta_{\text{mean}}} \bigg|_{\delta=0} = \frac{3}{2} \sqrt{\frac{2(a + 2\delta_{\text{mean}})E}{\rho A(\delta_{\text{mean}})^3 L^3}} \cdot \frac{1}{2} \sqrt{\frac{2(a + 2\delta_{\text{mean}})^3 E}{\rho A(\delta_{\text{mean}})^3 L^3}} \frac{\partial A(\delta_{\text{mean}})}{\partial \delta_{\text{mean}}} \bigg|_{\delta_{\text{mean}}=0}
\]

From (A-9), the same results can be obtained as in (12) with \(\delta \) in (12) replaced by \(\delta_{\text{mean}} \).